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ABSTRACT

In this paper, an efficient and accurate numerical procedure to determine the thermo-

hydrodynamic performance of cavitating bearings is described. This procedure is based on the

earlier development of Elrod for lubricating films, in which the properties across the film

thickness are determined at Lobatto points and their distributions axe expressed by collocated

polynomials. The cavitated regions and their boundaries are rigorously treated. Thermal

boundary conditions at the surfaces, including heat dissipation through the metal to the

ambient, are incorporated. Numerical examples are presented comparing the predictions using

this procedure with earlier theoretical predictions and experimental data. With a few points

across the film thickness and across the journal and the bearing in the radial direction, the

temperature profile is very well predicted.

*NASA Resident Research Associate at NASA Lewis Research Center.



INTRODUCTION

The increasing trend towards higher speed, higher performance, but smaller size,

machinery has pushed the operating conditions of the bearings towards their 'limit design'.

Hence, forreliablepredictionof theperformance of such bearings,a model which accountsfor

allthe operatingconditionsas closelyaspossibleisbe,coming increasinglyimportant. Since,

the lubricantviscositystronglydepends on temperature,the usual classicalassumptions of

constant viscosityor effectiveviscositybecome untenable.In many cases,the variationin

viscositycan cause a profound impact on performance and itcan no longerbc considered to

have only secondaryor perturbationeffect.

The evidence of growing interestamong researchersin studyingthe thermal effectsis

attestedby the recentsurvey by Khonsari (1987) and the workshop on the thermal aspectsof

fluidfilm tribology(Pinkus, 1990).The methodology of inclusionof thermal effectsspans

from approximations by expressing the localtemperaturedistributionby a singlevalue,de-

coupling of the energy and Reynolds equationsand/orassuming the bounding surfacesto bc

adiabatic,to a fullTHD model analysisconsideringheatgenerationtodissipationthrough the

entiresystem. Each of thesemethods has itsown meritsand limitations.Approximations arc

aimed at fastersolutionswhile THD models are used for accurate solutionsat the cost of

computer time.

The temperaturevariationina lubricantdepends significantlyon the lubricantflow rate

through the entirebearing. The film rupture and reformation locations,reverse flow and

viscous dissipationand heattransfertometal surfacesin thecavitatedregionare importantin

determining the temperature profile.Although most of the studieson thermal effectshave

includedthevariationsintemperatureacrossthefilm,generallythecavitationeffectshave bccn

only superficiallyconsidered. Jakobsson-Flobcrg (1957) - Olsson (1965) have developed

boundary conditions(JFO theory),which are based on theconservationof mass principleand

the assumption thatthe fluidflows in the cavitatedregionin the form of striationsextending

between thecavitationboundariesand acrossthe filmthickness.This model isknown tohave

deficiencies;but nevertheless provides considerable improvement over the earliermore

approximate models (Brewe, 1986).

More recently,therehave been many contributionsin theliteratureon thermalanalysis,

which include the cavitationeffects.Boncompain et al (1986) used Reynolds boundary

conditionsfor both ruptureand reformation,and forthefilm streamletsinthe cavitatcdregion

applied the energy equation of the same form as in fullfilm,except thatthe pressure and

transversevelocitywere taken as zero.Ott and Paradissiadis(1988) applied JFO boundary

conditionsto determine the cavitatedregionand used the same energy equation for both full
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film and cavitated region. However in the energy equation, they used mean value of fluid

velocity components, averaged over the film thickness. Han and Paranjpe (1990, 1994a) also

applied JFO boundary conditions to determine the cavitated region using the numerical

algorithm developed by Elrod (1981). They used a complete energy equation for the entire

bearing, with the mass fraction of fluid in the cavitated region included in the energy equation.

Later, Paranjpe (1992) and Paranjpe and Han (1994b) extended the analysis for dynamically

loaded bearings and non Newtonian effects of the lubricant. Mittwollen and Glienicke (1990)

considered mass conservation in their study on the thermal effects on the multi-lobed bearings

for turbo machinery.

Although viscosity variations across the film thickness have decisive effect on the

bearing performance, viscosity profile in that direction is rather more important than the

individual point wise viscosity values. This is because, the coefficients in the hydrodynamic

equation are functions of integral of viscosity across the fill. By choosing a few points across

the field, the location of these points being zeros of the Jacobi polynomial, the profile can be

well predicted. Elrod (1991) showed that the conformity using Legend_re polynomials at

Lobatto points, is much better than with polynomials based on equidistant points. If the order

of polynomial is increased, equispaced interpolation may fail to converge while the Legendre

polynomial interpolation becomes progressively better. The Lobatto integration considers the

end point values also and is a highly accurate scheme. Obviously, lesser the number of points

needed across the film, lesser the computational efforts required. Also, when the boundary

conditions at film-metal interfaces are in terms of temperature gradients, the unknown

boundary temperatures are expressed in terms of all internal Lobatto point temperatures using

the polynomial approximation. Hence, the boundary conditions will have direct impact on all

the internal points, instead of only the neighboring nodes.

In this paper, a numerical procedure which is both accurate and fast is described. This

is achieved by sampling the transverse temperature, flow and velocity values at few chosen

points and interlinking them by constructing orthogonal polynomials to determine their profile.

Elrod (1991) introduced this basic approach for films. Later, Elrod and Vijayaraghavan (1995)

extended the procedure to include cavitation effects also. In this procedure, universal

hydrod_,namic and energy equations are developed for the entire bearing and mass and energy

conservation across the reformation boundary is rigorously implemented. A dual time step

procedure is used to solve the THD model for steady state results. Predictions of pressure and

temperature profiles using this procedure are compared with various analytical and

experimental data available in the open literature.
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NOMENCLATURE

C "

Cp -

D -

g -

h -

h t -

K

L

m

N

P

P

Q-

q -

r -

T -

t -

U -

U -

V -

V -

V -

W -

X -

y -

Z

Radial clearance

Specific heat

Journal diameter

Switch function

Film thickness

Heat transfer coefficient

Thermal conductivity

Bearing length

Mass flux

No. of Internal Lobatto points

Legendm polynomial

Pressure

Flow rate

Heat flux

Radius

Temperature

Time

Surface velocity in x direction

Fluid velocity in x direction

Velocity vector (u ex + v ey)

Total velocity vector (u ex + v ey+ w ez)

Fluid velocity in y direction

Fluid velocity in z direction

Circumferential co-ordinate axis

Axial co-ordinate axis

Co-ordinate axis across the film thickness

I_ - Bulk modulus

e Eccentricity ratio

Viscous dissipation

t: Thermal diffusivity

tt Viscosity

0 Partial film content

p Density

_) Volume of cell

c0 Angular velocity

- Fluidity (lhO

- Angular co-ordinate

- Transformed co-ordinate(2z/h)

Subscripts

a - Ambient

b - Bearing

c - C.avitated region

f - Film

g - Groove

j - Journal

L - Lower wall (_= -1)

R Reference

s Supply

U Upper wall (_= +1)

Undcrlifie -

A,B,C,D,E,F,G,R & S

Legendre coefficients

Matrices (see Numerical Formulations)
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THEORETICAL DEVELOPMENT

The continuity, momentum and energy equations considered in this development are of

the following form:

Continuity"

Momentum •

V. v = 0 (1)

) dEnergy: pCp _ v. VT = Oza (3)

(2)

Basic assumptions are: only viscosity varies with respect to temperature; density and other

thermal properties are constant; pressure is constant across the film thickness; Only the film

conduction and velocity gradients across the film thickness are significant. All these

assumptions are generally accepted for such applications, but does not impose any limitation of

this procedure.

The fluidity, {, which is the reciprocal of viscosity, is used as a variable and expressed

in a series of Legendre polynomials, as

(4)

The Legendre coefficients _k are obtained by collocation at Lobatto points. Also, the fractional

film gap, z, is transformed into _ co-ordinates using the relationship _ = z/(h/2), z being

measured from the mid film surface. The governing equations for the Legendre coefficients

(Elrod, 1991) are

V = V L + A _ (q0) dq_ + B qo_ (q)) dq_
1 (5)

where

VU - VL - 2 B ._1
3A=

2

m=(Vu+VL)h _ h_lA
P z ..3

The hydrodynamic equation is written as

(6)
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,h12 -_- + 6 (Vu + VL). Vh- 6 (Vu- VL) V. h = V. _p h3 Vp

where

3£0
Here, the expression for _p is true, irrespective of number of Lobatto points.

The three dimensional energy equation is written as,

(7)

8'1" 4 _: 32T

where

n_=.l

Dt h

(8)

Cavitating Bearing

In the cavitated region, the pressure is taken to be constant at cavitation pressure and the

Couette flow is assumed to exist in the form of striations occupying a portion of the volume.

The striations extend between the cavitation boundaries and bounding surfaces (see Fig. 1). In

a fashion similar to the development of a single 'universal equation' applicable for both full film

and cavitated regions for isothermal systems (Elrod and Adams, 1974), the hydrodynamic

equation for the present application can be written as,

12 --_ + 6 (Vu + VL). - 6 - = (9)

where

8 = { P/Pc in full film region

- _f/_t in cavitated region

8p = 8p

} for O > 1
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Equation(9) has only 0 as independent variable and when solved determines 0 distribution for

the entire bearing (thereby pressure distribution) at any instant of time.

According to JFO theory, the liquid film in the cavitated region is conf'med to the

striations. Since, our interest is to determine the film temperature variation in the film, the

energy equation at the cavitated region is basically for the striations only. Hence, Eq. (8) is

applicable for the striation also. Since length to width ratio of striation will be large, Elrod and

Vijayaraghavan (1995) have developed the formulation to evaluate the Lagrangian derivative

(D_.JDt) for the striations, using the short bearing theory which involves some transverse

pressure gradient. It has been shown that, within the cavitated region, independent of striation

width, we can write the flow gradient term as,

V.hIiVd_=V.flhVd_=UL(l+_)_+U- _'_-/ la /[_Ii_d_-Ii_d_]2 _x/3._0]

where

 OxlL (lO)

hc =h (U +- U"_I/

3 o1

_int _

; U +=U U+UL;U- =UU-UL

Note that, at _ = 1 this expression reduces to -2(_l_t) and at both upper and lower walls the

Lagrangian derivative vanishes, as it should. Also note that there is no transverse temperature

variation within the striation and since, the striations are separated from one another, there will

not be any convective heat transfer in the axial direction. Since, we are only analyzing the film

in the cavitated region, there is no need to include the striation width (0) or vary the thermal

properties in the cavitated region. However, when heat flux to the boundary surfaces are

determined in this region, corresponding striation width should be considered.

Now, we have one governing hydrodynamic and one energy equation applicable to the

complete bearing.
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Interface Conditions

For cavitating bearings, the film reformation interface has to be treated more

rigorously. Figure 1 shows the film reformation interface where the striated film abrupdy

coalesces to form a full film. On the cavitated side of the interface, the film has a Couette flow

velocity distribution, while on the full film side, the retarding effect of rising pressure reduces

the film's convective capacity. Across the interface, the total mass and energy must be

conserved. Conservation of total mass flow is automatically satisfied when the hydrodynamic

equation, Eq. (9), is solved. When there is no reverse flow on the ftlm side of the reformation

interface, the Lagrangian derivative (D_/Dt) adequately describes the fluid motion across the

interface and would satisfy the conservation of energy. However, due to adverse pressure

gradient in the trim side, ff a reverse flow occurs in the film side near the stationary wall, then a

more detailed consideration of the situation is warranted. Eked and Vijayaraghavan (1995)

have developed a detailed procedure for determining flow pattern and temperature at the film

side of the interface for such cases. It is reasonable to assume that across the interface, the

temperature associated with a fluid particle does not change much. Thus across the interface, it

is hypothesized that

T = T (Q) (lla)

where

Q(_) = { 0 flu d_ in cavitated regi°n

flu d_ in full filmregion

Within the reverse flow region, when Q < 0 and u < 0, the temperature is determined by the

energy equation, from the upstream values. After the velocity becomes positive, but Q < 0,

then for the same flow, Q,

T(Q, u > 0) = T(Q, u < 0) (1 lb)

Beyond.this region (Q > 0 and u > 0), the temperature is determined from the flow from

cavitated side. For the same flow, Q,

[T(Q)]fllm side = [T(Q)]cav. side (11c)

In other words, T(Q) is continuous across the reformation interface, but T(_) may be

discontinuous.

At the film rupture interface, since 0=1 at both sides of the separation front, no special

treatment of the interface is needed.
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Boundary Conditions

While the cavitation boundary conditions are built into the governing equations, the

thermal boundary conditions for the fluid-solid interfaces have to be specified. There are a

variety of boundary conditions that can be imposed, based on the total thermal system being

considered. When the thermal analysis within the film is of importance, the heat flow to the

boundaries of the film are characterized by simplified approximations, namely, constant

temperature, adiabatic or no net heat flow boundary. In a fuU THD model, in addition to

considering the heat transfer within the fluid, heat dissipation to the ambient through the

boundary surfaces must also be determined. In this way, an actual thermal system is

considered for the analysis and hence the predictions will be more realistic.

At the fluid-solid interfaces the temperatures and the fluxes must be continuous. At the

film-bearing interface these conditions yield;

where

[T]z= h/2 = [T]r= rbi

z = h/2 -- rbi

(12)

1 for 0 >_.1
Or={

0 for0 < 1

In the cavitated region, the heat can be transferred to the bearing surface only at the striation

surfaces. Hence, the parameter 0 T is introduced, as 0 indicates the striation width.

The continuity of temperature and flux at the fluid-journal interface is also imposed in

similar manner, except that, since the journal is in motion, the cyclic variation of journal

surface temperature can be assumed to be constant in the circtimferential direction (Dowson et

al, 1966). Therefore, the heat flux to the journal surface can be averaged over the

circumference. The net heat flux is determined by integrating the film temperature gradient in

the following manner (Khonsari and Beaman, 1985).

[V]z=- hn = [V]r= rj (13)

Kf dx= Kj
2nr Jo0T[_-ZJz = - h/2 =rj

The outer surfacesand the lateralsurfacesof the bearing transferheatto the ambient through

freeconvection,depending upon theprevailingheattransfercoefficient.
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In the case of grooved journal bearings, the hot oil carried over mixes with the

relatively cooler supply lubricant. Assuming instantaneous mixing at the groove, the

temperature of the lubricant leaving the groove is obtained using a simple heat balance. Often,

the instantaneous mixing assumption can be questionable in real situations. Heshmat and

Pinkus (1986) and Mitsui et al (1983), among others, have tested a number of different

bearings and have developed empirical equations to estimate the mixing coefficient used to

determine the mixed lubricant temperature. However, for the numerical examples presented

here, only simple heat balance is used to determine the oil mixture temperature at the groove.

Heat Conduction Equations

The heat transfer within the circular bearing shell is governed by the following heat conduction

equation, written in cylindrical co-ordinate system,

(14)

In the case of a rotating journal, the journal temperature is considered to be independent of the

x direction and the relevant term drops out.

Since, the hydrodynamic and energy equations are set up in unsteady form, the above

heat conduction equations are also written in unsteady form. Although in the present paper,

only steady state cases are considered, the development of this procedure is aimed at analyzing

dynamically loaded applications. Also, for steady state cases, the time derivative term in these

governing equations provides time dependent numerical dissipation and has a stabilizing effect

on the iteration process. Here, the time step is used as a control parameter for the rate of

convergence towards asymptotic steady state conditions

Equations (9), (8), (10) and (14), along with the appropriate boundary conditions, are

solved simultaneously to determine the temperature distribution for the whole system.
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NUMERICAL FORMULATIONS

Matrices

Elrod (1991) has indicated the procedure to set up the required matrices. For the sake

of continuity, the overall approach is mentioned here. It is convenient to set up the fluidity in a

vector form and determine the velocity, flow and temperature using matrices. Using matrix

notation we can write
N+I N+I

(_) = Z _Pn(_k) = Z Ckn._ (15)
0 0

where Pn is the Legendre polynomial of order n, -_n is the Legendre coefficient, _k is the

value at k th Lobatto point and N is the number of internal Lobatto points. Therefore,

_ = C._ and _ = c'l_ (16)

Similarly, we can also write,

T = CT andT = C'IT

The velocity profile according to Eq.(5) can be determined from,

V = VL+AF_+BG_

(17)

(18)

The matrices F and G can be obtained by evaluating the integrals in Eq.(5) at Lobatto points.

Similarly, flow rate obtained by integrating the velocity profile, is computed using

flVd_ = VL(I+_J+AR._+B S_ (19)

The temperature gradients in the _ direction is obtained by successively differentiating F_zl.(17),

and can also be written in matrix form as,

= DT and - ET

0; 0_2 (20)

Once the number of internal points is known, the Lobatto point locations, weighting

factors and the Legendre polynomials can be determined using standard mathematical

handbook; for example refer Abramovitz and Stegun (1965). Then, the matrices C, C "1, D, E,

F, G, R and S can be easily determined. Note that, these matrices need to be computed only

once.
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Cavitation Algorithm

The 'universal' hydrodynamic equation, Eq.(9), is written in finite-difference

formulation using the Elrod cavitation algorithm (Elrod, 1981), appropriately modifying the

terms for the present form of the equation. The cavitation algorithm is solved using the two

step alternate direction implicit (ADI) method, in which the time step is split into two halves

and for each half, 0 values in one co-ordinate direction is implicitly solved. For each sweep,

this results in only tridiagonal system of equations to be simultaneously solved. The tridiagonal

matrices can be efficiently inverted using Thomas algorithm (refer Anderson et al, 1984).

When the process is completed, 0 value distribution is updated for next time step.

Energy Equation

The energy equation, Eq.(8), is implicitly solved using three dimensional ADI method,

developed by Douglas and Gunn (1964) (also refer Anderson et al, 1984). This procedure,

which is an extension of Crank-Nicholson scheme to three dimensional form, is second-order

accurate in time and space, and is stable. The solution for one time interval is obtained in three

steps. At each step, one direction is treated implicitly while the derivatives in other directions

are evaluated for known values of temperature. With the present formulation of the energy

equation, during the sweep in _ direction, (N x N) matrix has to be inverted, N being the

number of internal Lobatto points; for the other two directions only tridiagonal matrices have to

be inverted.

For the full THD model, the temperature distribution in the fluid, bearing and journal is

to be determined. In order to efficiently and simultaneously determine the temperature

distribution in the bearing/runner metals and also to effectively couple the boundary conditions

at fluid-metal interfaces, Lobatto points are positioned within both the bearing and journal

domains. Now, the bearing and journal temperature gradients in _ direction can be expressed in

matrix form, similar to Eq.(20). Proper care must be taken to index all the Lobatto points,

since, different equations, boundary conditions and variables are being used in each domain.

When there are regions of reverse flow in the bearing, computational instabilities could

be encountered. The negative velocity hinders the solution of energy equation, which is being

treated as initial value problem and marched forward. Also, the convection terms in the energy

equation are of f'u'st order. Central differencing of these terms sometimes causes numerical

instability due to lack of diagonal terms. To alleviate both problems and to preserve numerical

stability, one sided upwind differencing is employed for the convection terms. For example,
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_x-x) - Ti-igx;
u = abs (ui) Ti

i Ax
igx = sign (ui)

Similarly for convection in transverse (y) direction.

(21)

Boundary Conditions

When the boundary surfaces are held at constant temperature, only the temperature

distribution at internal Lobatto points need be determined. However, when one or more

boundaries have other boundary conditions involving temperature gradients, those boundary

temperatures are also unknown. Because of our polynomial approximation procedure, it is

possible to express the boundary temperatures and thus the boundary conditions in terms of all

the internal Lobatto point temperatures. In the THD model temperature at all the four

boundaries, two fluid-metal interfaces, metal-ambient interface and journal center or inside

diameter, are unknown. It is still possible to express these boundary conditions in terms of

internal Lobatto point temperatures in the form of simultaneous equations. The temperature

distribution in the whole system can be solved in implicit manner and from the internal

temperatures, boundary temperatures can be determined. Though, this process is somewhat

tedious, it is relatively straight forward. For more details, interested readers are referred to

Villadsen and Michelsen (1978).

Dual Time Step

The thermal response of a fluid film is of the order of milliseconds, whereas, the

temperature of metal parts takes seconds or minutes to stabilize due to their large thermal

capacity. Also, with the numerical procedure point of view, the grid spacing across the film

thickness is of the order of microns, while in the metal the grid points are in terms of

millimeters apart. When the whole system is solved simultaneously, these differences can

cause numerical problems. Khonsari and Beaman (1985) reported that when the intermediate

results of the metal conduction equation are directly used as boundary conditions for energy

equatiofi, the solution becomes unstable. They used all equations in steady state form and the

Reynolds and energy equations were solved several times before moving to heat conduction

equation. Paranjpe and Hart (1994b) also discussed about the time scales for thermal transients

and determined that the time scale for thermal transients for journal and bearing to be 3 to 4

orders of magnitude greater than those for fluid.

To tackle this problem, a dual time step procedure is utilized here. Smaller time steps

(of the order of 10"3-10 -4 sec) were used to solve fluid film equations and larger time steps (of
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the order of 100-10 "2 sec) were used in bearing and runner metal domains, and all the

equations are solved simultaneously. For steady state problems, the system eventually attains

an equilibrium conditions with the surroundings and this dual time scale should not matter.

With this dual time march, we are only accelerating the temperature changes in metal

compatible with the temperature changes in fluid. This procedure is found to be very stable

and relatively faster in convergence. The final solution was also found to be independent of the

time step. When the time step used for conduction through the metal is not compatible with the

time step used in fluid domain and the solution diverges, then the time steps are adjusted and

the analysis is repeated.

Solution Procedure

When the number of Lobatto points is known, their locations and all the matrices are

readily computed. Initially, the whole bearing clearance is assumed to be filled with lubricant

and the internal temperatures are set as a function of boundary temperatures. Fluidity values at

all points are determined according to the latest available temperatures and the viscosity-

temperature relationship. The hydrodynamic equation is solved using the cavitation algorithm

to determine the 0 distribution and thereby the pressure and mass flow rate. Using the flow

vectors A and B and other matrices, three dimensional velocities, flows and viscous dissipation

at every Lobatto point are determined. Across the film reformation front, the interface

conditions as described above are enforced. The energy equation is implicitly solved. After

each step, the boundary temperatures are updated. After each time step the convergence in 0

and T are checked and if not adequate, the process is repeated by updating the fluidity values

and switch function, g, values. In the case of grooved journal bearings, at every time step the

mixed lubricant temperature is determined using simple heat balance. The nodes in the groove

location are assumed to be at constant supply pressure and at constant mixed lubricant

temperature.

The numerical code is written for finite bearings and is vectorized for use on Cray

XMP/YMP computers. For the numerical examples discussed in this paper, convergence

accuracies of 10 -6 for 0 and 10 -3 for temperature are imposed. However, it is found that the

convergence criteria for 0 is more stringent and when the steady state conditions are achieved,

the temperature convergence is below 10 "3. Various grid sizes and Lobatto points were tried

and it was found that above 41 nodes in the circumferential direction, depending upon L/D, 7

to 11 nodes along half the bearing length in axial direction and 3 Lobatto points, the results are

very similar; but the computer time requirement was becoming larger. In order to make use of

vectorization of Cray computers, 49 nodes in the circumferential direction, 9-11 nodes axially,
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3 internalLobatto pointsacrossfilm andjournal and5 internalLobatto points acrossbearing

radius arechosen.The computertime requirementis primarily dependenton the type of
problembeing solved. For a typical finite journal bearing, to solve a direct problemwith

eccentricity specified, with adiabaticboundaryconditions, the CPUtime on a Cray XMP

computer,for theabovegrid arrangement,was15-20secondsandfor atypical THD model

includingjournal andbearing,theCPUtimerequirementwas100-200seconds.

NUMERICAL EXAMPLES

With the present procedure, several cases are analyzed and the results are compared

with the earlier analytical predictions and experimental data available in literature. The bearing

data are shown in Table 1.

Ott and Paradissiadis (1988) and later Han and Paranjpe (1990) analyzed the

temperature distribution in an axial grooved journal bearing wherein the journal and oil inlet

groove are maintained at constant oil inlet temperature and the bearing surface is adiabatic. The

pressure and temperature contours at the axial symmetry plane predicted with just 3 internal

Lobatto points are compared with the predictions of Hart and Paranjpe (1990), as shown in

Figs. 2 and 3, respectively. The trends in these figures are similar to the earlier predictions.

Both the present prediction and those of Hart and Paranjpe have the same pressure profile with

a peak pressure of 18 MPa, compared to the value of 14.5 MPa predicted by Ott and

Paradissiadis. The temperature contours have some distinct differences. Both Ott and

Paradissiadis and Han and Paranjpe predicted the fluid temperatures in the cavitated region to

be fairly constant at the same _ locations, with the maximum value being 100°C and 120°C

respectively. With the present procedure, as can be seen from Fig. (3), fluid temperatures in the

cavitated region increase at the same _ locations, with the maximum value being 130°C and

fluid with lower temperature is closer to the constant temperature moving journal. In the

cavitated region, the film thickness increases and the fluid velocity component in the _ direction

will have to be significant in order to fill in the gap, towards the hotter adiabatic boundary

surface. Therefore, it is reasonable to expect the temperature to rise in this region, as predicted

by the p-resent procedure. The load capacity, as per the present prediction is 328.4 kN as against

273.2 kN obtained by Ott and Paradissiadis.

Ferron et al (1983) conducted experiments to measure the temperature variations in a

journal bearing and compared the data with their theoretical predictions. They determined that

due to differential dilatation of the steel journal and bronze bearing, the nominal radial clearance

of 145 mm at 20°C became 152 mm at 45°C. Later Boncompain et al (1986) in their analysis

of the same bearing, in addition, approximated the distorted bearing internal surface to be a
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circle anddeterminedthat thenominal radial clearance of 145 mm and eccentricity ratio of 0.8

at 20°C is equivalent to 157 mm and 0.74 respectively at 45°C. Khonsari and Wang (1991)

also performed analysis on this bearing, by including thermal expansion for both journal and

bearing and elastic deformation of bearing and determined that the collective effect of these

factors yielded satisfactory comparisons with the experimental data. Figure 4 is the comparison

of temperature distribution at the bearing symmetry plane, predicted using 3 internal Lobatto

points each across film and journal radius and 5 internal Lobatto points across bearing

thickness with the predictions of Boncompain et al (1986). Obviously, the plots are not to

scale, with the dimensions of the film region highly exaggerated, so that temperature variations

within the film can be clearly seen. The general trend in the temperature contours predicted by

both procedures is similar. Both analyses predict a peak temperature of about 52°C. However,

the present analysis predicts the maximum fluid temperature around the film rupture region,

whereas, Boncompain et al predict this occurrence in the cavitated region. In the THD model,

since heat is being dissipated to ambient through the bearing metal, the bearing inside surface is

cooler than the fluid temperature in this region. Hence, the maximum temperature should occur

in the vicinity of minimum film thickness, where the viscous dissipation is the largest. Notice

that, the oil film near the supply groove is cooler than the bearing/journal metal temperature. In

this case, much of the journal metal is at about 46°C. The isotherms in the bearing metal are

primarily in the radial direction.

We now compare predicted bearing temperatures with values determined in various

experiments. Figures 5 and 6 compare the present predictions of pressure and temperature

profile around the circumference of the bearing at the symmetry plane with the experimental

data of Ferron et al (1983) when the bearing is operating at 2000 rpm under 4 kN load and at

4000 rpm under 6 kN load. The predicted pressure profile, considering only the differential

dilatation, agrees very well with the data and the predicted bearing inner surface temperature

variation is close to the experimental data, particularly in the cavitated region. Since, the active

part of the thermocouples are located near the film-bearing interface, the fluid-metal interface

temperatures are used for this comparison. As can be seen from Fig. 4, the temperature profile

in the bearing is predominantly in the radial direction and temperature difference between

inside and outside surfaces are only about 2-4°C. Nondimensional side leakage flow rate

(Q/LcU) predicted by the present procedure are compared with the experimental results of

Ferron et al (1983) for a wide range of eccentricity ratios and at two different speeds (2000

rpm and 4000 rpm) in Fig. 7. The agreement is excellent. Also note that, for an isothermal

analysis, irrespective of the speed, the nondimensional flow rate will be the same. The thermal

effects on the flow rate in the bearing are clearly brought out in this comparison. Figure 7 also

provides plots of power loss at these conditions. There is a significant increase in the power
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loss due to increased speed, but it does not vary much due to variation in eccentricity ratio or

applied load.

Mitsui (1987) conducted a number of experiments on circular journal bearings. The

bearing with an L/D value of 0.7, had one axial groove of 10° arc, extending 85% of length,

located at the crown of top pad. Figure 8 compares the predictions of bearing outside

temperature with the experiments conducted at 3.73 kN and 1750 rpm, with two different

lubricants, transformer oil and #140 turbine oil. The predicted temperature variation is close to

the experimental data, particularly in the cavitated region. The higher the viscosity of lubricant

used, the larger the temperature rise. Though the viscosity of turbine oil is more than six times

that of transformer oil at supply temperature, the effective viscosity in the film is not that much

different, due to the larger temperature rise.

Lund and Tonnesen (1984) conducted experiments on a two axial groove journal

bearing, each groove extending 10 ° circumferentially and half the length axially. Figure 9

compares the circumferential profile of the bearing wall temperature at the bearing symmetry

plane, at the same applied load was 5.6 kN and when the journal speed 3500 rpm and 5000

rpm. The predicted temperature variation is in close agreement with the experimental data,

except upstream of the second groove. Fitzgerald and Neal (1992) also conducted experiments

on two axial groove journal bearings, each groove extending 28.70 circumferentially and 80%

of the bearing length. Figure 10 provides a comparison of the circumferential profile of the

bearing wall temperature at the bearing symmetry plane, when the applied load was 9.43 kN at

the journal speed of 8000 rpm; but for different L/D ratios of 0.5 and 1.0. Again, the predicted

temperature variation is in close agreement with the experimental data, except upstream of the

second groove. In the twin axial groove bearings, although there is no significant supply of

lubricant through the second groove, the groove is assumed to be flooded. Hence, at the

upstream of the second groove the striation width is comparatively larger. Since, the heat

transferred to bearing metal in the cavitated region is at the striation surface, more heat is

dissipated to the ambient at this region. Therefore, the predicted metal temperature in this

region rises a bit before dropping. In the experiment, there could be mixing of hot oil with the

cooler lubricant causing the fluid temperature to reduce at the second groove, as can be seen in

Fig. 9. -Considering this, the rise in temperature of the fluid at the upstream of second groove

is compatible with the predictions. Such a situation is, of course, difficult to treat analytically.

Knight and Niewiarowski (1990) also predicted the temperature profile for the above cases

using a gas bubble model and obtained good agreement with the experimental data in the

cavitated region. The gas bubble model assumes that the film is continuous in the cavitated

region, but the effective density and viscosity of the film are varied according to the gas

fraction. In the present approach, the film occupies only a part of the volume in the cavitated
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region,corresponding to the mass fraction and only the film is considered for thermal analysis.

Ma and Taylor (1994) developed a seperation cavitation model to account for the oil back flow

from the groove into the cavitated region and were able to determine the temperature fade.

This present model also, by conserving mass flow, does take into account back flow in the

groove and correctly determines the temperature fade in the cavitated region at the trailing

groove.

In general, the present predictions compare very well with various analytical and

experimental data. While comparing the predicted results with experimental data, it should be

recognized that there will be number of variables in the experiment that can not be easily

simulated theoretically. To name a few: operating clearance, film shape, mixing at the groove,

heat transfer coefficient, heat dissipation to other components in the test rig etc. Considering all

these factors, it can be said that the present procedure predicts the temperature profiles rather

well.

CONCLUSIONS

An efficient numerical procedure to determine the thermohydrodynamic performance

of the cavitating bearings is developed considering mass and energy conservations and more

accurately treating the cavitated region and its boundaries. This procedure requires few points

across the film thickness strategically located and the profde is expressed using collocated

polynomials. The details of the theoretical and numerical formulations are presented. The

predictions using this procedure are compared with various numerical and experimental data,

and lead us to the following major conclusions:

(i) The predictions are in good agreement with the experimental data and predictions by

others.

(ii) With just 3 internal points across the film (and across the bearing shell and journal

radius), the temperature profile can be well predicted.

(iii) Although some matrix operations are required with this procedure, the computer time

requirement is very small.

(iv) The approach gives a logical treatment of mass and energy conservation across the

cavitation boundaries and determines three dimensional viscosity, velocity, flow, viscous

dissipation and temperature profiles.

(v) With a dual time step procedure, the temperature distributions across the film and the

metals are simultaneously determined, resulting in faster steady state solutions.
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